您好、欢迎来到现金彩票网!
当前位置:幸运彩票 > 非零值 >

FFT相关原理及使用注意事项

发布时间:2019-05-14 04:38 来源:未知 编辑:admin

  (Fast Fourier Transform,快速傅立叶变换)可以将时域信号转换至频域,以获得信号的频率结构、幅度、相位等信息。该算法在理工科课程中都有介绍,众多的仪器或软件亦集成此功能。

  对于模拟信号的频谱分析,首先得使用ADC(模拟数字转换器)进行采样,转换为有限序列

  ,其非零值长度为N,经DFT(离散傅立叶变换)即可转化为频域。DFT变换式为:

  FFT基于一个基本理论:任何连续的波形,都可以分解为不同频率的正弦波形的叠加。FFT将采样得到的原始信号,转化此信号所包含的正弦波信号的频率、幅度、相位,为信号分析提供一个创新视觉。

  例如在日常生活中有使用到的AM(Amplitude Modulation,幅度调制)广播,其原理是将人的声音(频率约20Hz至20kHz,称为调制波)调制到500kHz~1500kHz正弦波上(称为载波)中 ,载波的幅度随调制波的幅度变化。声音经这样调制后,可以传播得更远。在AM的时域波形(波形电压随时间的变化曲线),载波与调制波特征不易体现,而在FFT后的幅频曲线中则一目了然。如下图为1000kHz载波、10kHz调制波的AM调制信号,时域信号经FFT后其频率能量出现在990kHz、1.01MHz频率处,符合理论计算。

  现实生活中的模拟信号,大多都是连续复杂的,其频谱分量十分丰富。正如在数学中常量π,其线来替代π时,计算值与真实值就会有偏差。在使用FFT这个工具时,受限于采样时的频率Fs、采样点长度N、ADC的分辨率nbit等因素的制约,所得到的信息会有所缺失与混淆。

  FFT分析结果中,存在一个那奈奎斯特区的概念,其宽度为采样率的一半Fs/2,信号频谱被分成一个个相连的奈奎斯特区。日常信号分析中,大多关心的是1st奈奎斯特区的信号,即DC到Fs/2的频段。FFT所得到的信号频率信息,也是在1st奈奎斯特区内。其他高奈奎斯特区频段的信号,会以不同的方式混叠到1st奈奎斯特区:

  如下图所示,假如原有模拟信号频谱段较宽,信号频段的最大频率大于采样率Fs。在采样率Fs下,信号频谱的A、B、C三部分区域,分别位于1st、2st、3st奈奎斯特区。那经FFT后:

  这样在FFT的分析结果中,1st奈奎斯特区就会重叠了A、B、C三部分区域的信号。其他奈奎斯特区频率信号干扰到需分析的信号,就会造成常说的波形混叠问题。

  就单个频率信号而言,若原始信号的频率为±KFs ±Fin(K为自然数),则经过FFT分析后,信号会落入在1st奈奎斯特区的Fin频率处。

  这在时域上理解不难:在常用设备示波器的采样率设为100MSa/s,这时输入10MHz、90MHz、110MHz频率的信号,采样得到的波形是一样的,都为10MHz。此时奈奎斯特区宽度为50MHz,信号90MHz位于2st奈奎斯特区,经Fs/s镜像后,为10MHz;信号110MHz位于3st奈奎斯特区,经频偏Fs后,亦为10MHz。在FFT后的数据中,这三个频率信号的频点都落在1st奈奎斯特区的10MHz处。

  这相当把1st奈奎斯特区拉宽。当满足Fs/2大于信号频段的最大频率Fin_max时,自然不会现混叠。这是采样定理的简单实践。

  抗混叠滤波器最常见的是低通滤波器,此滤波器可以将高于Fs/2的高阶奈奎斯特区频段信号衰减掉,只保留待测量1st奈奎斯特区频段的信号。

  第二至第N/2个复数,代表着均匀频率间隔信号的特征。此复数的模,为此频率信号幅度的N/2倍;此复数的角度,为此频率信号的相位。一个奈奎斯特区包含N/2个频率点,频率点的间隔称为频率分辨率:

  NTS即采样时间,可见FFT的频率分辨率,与其他参数无关,只与采样时间长度有关。

  第N/2+1至第N个复数,从上文的奈奎斯特区可知,是1st奈奎斯特区的镜像,可以忽略。

  在利用FFT对ADC的动态性能评估中,为了减少不相关因素对动态性能的影响,测试中一般要求给ADC低噪电源、低噪时钟,待测信号幅度尽量接近且略低于ADC的输入量程,而待测信号的频率Fin也有要求:

  TS*N即为采样时间,采样时间刚好包含了n个整周期的待测信号。这样选取输入信号频率的原因,是FFT分析中默认采集到的数据,是原始连续波形中的一段周期波形。既然波形是连续的,那波形肯定首尾相连的、开始点电压值等于终点处电压值的。

  若采样到的数据不是连续的,则相当数据在首尾处有一个电压突变,电压突变在频域上就代表着很高的频率分量。这些高频的频率分量混叠到1st奈奎斯特区时,就会对原有信号的频谱造成干扰,这也叫频谱泄漏。

  在实际的信号分析中,待测信号的频率是很难事先设定的,这就容易会造成频谱泄漏。为了减轻这个影响,FFT加入了窗函数这个概念。窗函数,其实是一个加权系数,将不同位置的采样点,分别乘以不同的系数。经过加权相乘后,采样点就变成首尾相连的连续波形了。不同的窗函数,其加权曲线不一样,造成的影响就有所差异。举例hann窗的系数定义如下:

  ZDS4000 FFT分析功能可以自动计算总谐波失真THD、信噪比SNR,显示前10次高功率信号频率。

  FFT是简便而高效的分析工具,在众多的软件中都已很好的集成。在网络上简单搜索一下例程,在Matlab软件中简单敲入fft(),即可做信号分析。而ZLG立功科技-致远电子的高性能数据挖掘性示波器,FFT分析的样本数可达4Mpts,这使得示波器可以在最高采样率下,采样更长时间的波形。这样在FFT后,数据的奈奎斯特区就相当宽,而频率分辨率又相当窄,非常适用信号分析与噪声定位。

http://link100.net/feilingzhi/186.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有